Structure-function analysis of the presumptive Arabidopsis auxin permease AUX1.

نویسندگان

  • Ranjan Swarup
  • Joanna Kargul
  • Alan Marchant
  • Daniel Zadik
  • Abidur Rahman
  • Rebecca Mills
  • Anthony Yemm
  • Sean May
  • Lorraine Williams
  • Paul Millner
  • Seiji Tsurumi
  • Ian Moore
  • Richard Napier
  • Ian D Kerr
  • Malcolm J Bennett
چکیده

We have investigated the subcellular localization, the domain topology, and the amino acid residues that are critical for the function of the presumptive Arabidopsis thaliana auxin influx carrier AUX1. Biochemical fractionation experiments and confocal studies using an N-terminal yellow fluorescent protein (YFP) fusion observed that AUX1 colocalized with plasma membrane (PM) markers. Because of its PM localization, we were able to take advantage of the steep pH gradient that exists across the plant cell PM to investigate AUX1 topology using YFP as a pH-sensitive probe. The YFP-coding sequence was inserted in selected AUX1 hydrophilic loops to orient surface domains on either apoplastic or cytoplasmic faces of the PM based on the absence or presence of YFP fluorescence, respectively. We were able to demonstrate in conjunction with helix prediction programs that AUX1 represents a polytopic membrane protein composed of 11 transmembrane spanning domains. In parallel, a large aux1 allelic series containing null, partial-loss-of-function, and conditional mutations was characterized to identify the functionally important domains and amino acid residues within the AUX1 polypeptide. Whereas almost all partial-loss-of-function and null alleles cluster in the core permease region, the sole conditional allele aux1-7 modifies the function of the external C-terminal domain.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

AUX1 regulates root gravitropism in Arabidopsis by facilitating auxin uptake within root apical tissues.

Plants employ a specialized transport system composed of separate influx and efflux carriers to mobilize the plant hormone auxin between its site(s) of synthesis and action. Mutations within the permease-like AUX1 protein significantly reduce the rate of carrier-mediated auxin uptake within Arabidopsis roots, conferring an agravitropic phenotype. We are able to bypass the defect within auxin up...

متن کامل

Cell Polarity Signaling in Arabidopsis Involves a BFA-Sensitive Auxin Influx Pathway

Coordination of cell and tissue polarity commonly involves directional signaling. In the Arabidopsis root epidermis, cell polarity is revealed by basal, root tip-oriented, hair outgrowth from hair-forming cells (trichoblasts). The plant hormone auxin displays polar movements and accumulates at maximum concentration in the root tip. The application of polar auxin transport inhibitors evokes chan...

متن کامل

Jasmonoyl-L-Tryptophan Disrupts IAA Activity through the AUX1 Auxin Permease

Amide-linked conjugates between tryptophan (Trp) and jasmonic (JA) or indole-3-acetic (IAA) acids interfered with gravitropism and other auxin-dependent activities in Arabidopsis, but the mechanism was unclear. To identify structural features necessary for activity several additional Trp conjugates were synthesized. The phenylacetic acid (PAA) conjugate was active, while several others were not...

متن کامل

The AXR1 and AUX1 genes of Arabidopsis function in separate auxin-response pathways.

The recessive mutations aux1 and axr1 of Arabidopsis confer resistance to the plant hormone auxin. The axr1 mutants display a variety of morphological defects. In contrast, the only morphological defect observed in aux1 mutants is a loss of root gravitropism. To learn more about the function of these genes in auxin response, the expression of the auxin-regulated gene SAUR-AC1 in mutant and wild...

متن کامل

Subcellular trafficking of the Arabidopsis auxin influx carrier AUX1 uses a novel pathway distinct from PIN1.

The directional flow of the plant hormone auxin mediates multiple developmental processes, including patterning and tropisms. Apical and basal plasma membrane localization of AUXIN-RESISTANT1 (AUX1) and PIN-FORMED1 (PIN1) auxin transport components underpins the directionality of intercellular auxin flow in Arabidopsis thaliana roots. Here, we examined the mechanism of polar trafficking of AUX1...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Plant cell

دوره 16 11  شماره 

صفحات  -

تاریخ انتشار 2004